C. Hooley | On the Barban–Davenport–Halberstam theorem: XI | 1-41 |
E. Wirsing U. Vorhauer | Three two-dimensional Weyl steps in the circle problem I. The Hessian determinant | 43-55 |
U. Vorhauer | Three two-dimensional Weyl steps in the circle problem II. The logarithmic Riesz mean for a class of arithmetic functions | 57-73 |
A. Rotkiewicz | Periodic sequences of pseudoprimes connected with Carmichael numbers and the least period of the function lCx | 75-83 |
Z. Cao | A note on the Diophantine equation a^x + b^y = c^z | 85-93 |
H. Sharif | Hadamard products of certain power series | 95-105 |
P. Viader L. Bibiloni J. Paradí | On a problem of Alfréd Rényi | 107-115 |
A. Sárközy R. Ahlswede L. Khachatrian | On the quotient sequence of sequences of integers | 117-132 |
S. Kühnlein | Some families of finite groups and their rings of invariants | 133-146 |
R. Tichy C. Heuberger | Effective solution of families of Thue equations containing several parameters | 147-163 |
P. Schmid | The Stickelberger element of an imaginary quadratic field | 165-169 |
A. Schweizer | On elliptic curves in characteristic 2 with wild additive reduction | 171-180 |
H. Ichimura | Quadratic function fields whose class numbers are not divisible by three | 181-190 |
M. Bhargava K. Kedlaya | Continuous functions on compact subsets of local fields | 191-198 |
H. Kumagai | The determinant of the Laplacian on the n-sphere | 199-208 |
C. Snyder A. Özlük | On the distribution of the nontrivial zeros of quadratic L-functions close to the real axis | 209-228 |
J. Mauclaire | A characterization of some additive arithmetical functions, III | 229-232 |
W. Zhai | On sums and differences of two coprime kth powers | 233-248 |
T. Cochrane Z. Zheng | Pure and mixed exponential sums | 249-278 |
G. Harman | Integers without large prime factors in short intervals and arithmetic progressions | 279-289 |
W. de Azevedo Pribitkin | The Fourier coefficients of modular forms and Niebur modular integrals having small positive weight, I | 291-309 |
Y. Cai M. Lu | Chen’s theorem in short intervals | 311-323 |
K. Joshi C. Yogananda | A remark on product of Dirichlet L-functions | 325-327 |
P. Liardet P. Grabner | Harmonic properties of the sum-of-digits function for complex bases | 329-349 |
K. Ramachandra A. Sankaranarayanan | Notes on the Riemann zeta-function, II | 351-365 |
M. Margenstern Y. Matiyasevich | A binomial representation of the 3x + 1 problem | 367-378 |
A. Dubickas | On intervals containing full sets of conjugates of algebraic integers | 379-386 |