D. Gogol | Sentences with three quantifiers are decidable in set theory | 1-8 |
Z. Grande | Les ensembles de niveau et la monotonie d'une fonction | 9-12 |
W. Haver | The closure of the space of homeomorphisms on a manifold. The piecewise linear case | 13-19 |
C. Ho | On the local homogeneity and the invertibility of a topological space | 21-27 |
R. Pol | Some examples in the dimension theory of Tychonoff spaces | 29-43 |
R. Gardner | On concentrated sets | 45-53 |
R. Pol | Note on cathegory in Cartesian products of metrizable spaces | 55-59 |
V. Liem | Homotopy characterization of weakly flat knots | 61-72 |
E. Vought | On decompositions of hereditary uniecherent continua | 73-79 |
E. Kleinberg | The equiconsistency of two large cardinal axioms | 81-85 |
W. Kulpa | Some factorization theorems for closed subspaces | 87-90 |
A. Calder | Uniform homotopy | 91-99 |
C. Chong | Σn-cofînalities of Jα | 101-107 |
S. Itoh | Some fixed point theorems in metric spaces | 109-117 |
J. Krasinkiewicz P. Minc | Continua with countable number of arc-components | 119-127 |
J. Krasinkiewicz P. Minc | Continua and their open subsets with connected complements | 129-136 |
R. Pol E. Pol | A hereditarily normal strongly zero-dimensional space containing subspaces of arbitrarily large dimension | 137-142 |
S. Masih | On the fixed point index and the Nielsen fixed point theorem of symmetric product mappings | 143-158 |
V. Bhave | On the pseudoachromatic number of a graph | 159-164 |
T. Przymusiński D. Lutzer | Continuous extenders in normal and collecdonwise normal spaces | 165-171 |
F. Tall K. Kunen | Between Martin's Axiom and Souslin's Hypothesis | 173-181 |
S. Nadler | The metric confluent images of half-lines and lines | 183-194 |
D. Busch | Capacitability and determinacy | 195-202 |
M. Ehrlich | A theorem of Borsuk-Ulam type for multifunctions | 203-208 |
D. Doitchinov | Uniform shape and uniform Čech homology and cohomology groups for metric spaces | 209-218 |
J. Roitman | Paracompact box products in forcing extensions | 219-228 |
T. Przymusiński E. van Douwen | First countable and countable spaces all compactifications of which contain ßN | 229-234 |